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Abstract—Recently, works on improving the naturalness of
stitching images gain more and more extensive attention. Previous
methods suffer the failures of severe projective distortion and
unnatural rotation, especially when the number of involved
images is large or images cover a very wide field of view. In
this paper, we propose a novel natural image stitching method,
which takes into account the guidance of vanishing points to
tackle the mentioned failures. Inspired by a vital observation
that mutually orthogonal vanishing points in Manhattan world
can provide really useful orientation clues, we design a scheme
to effectively estimate prior of image similarity. Given such
estimated prior as global similarity constraints, we feed it into
a popular mesh deformation framework to achieve impressive
natural stitching performances. Compared with other existing
methods, including APAP, SPHP, AANAP, and GSP, our method
achieves state-of-the-art performance in both quantitative and
qualitative experiments on natural image stitching.

Index Terms—Natural Image Stitching, Vanishing Point, Glob-
al Similarity Prior.

I. I NTRODUCTION

Image stitching is a classical computer vision task that
combines multiple images into a panorama with a wider field
of view. Methods started to flourish since 2007, when Brown
and Lowe [1] proposed to use SIFT features [2] to fit a
global homography model for stitching. Since then, various
methods were developed to further improve the stitching
performance, including the spatially varying methods [3], [4]
with a higher degree of freedom for good alignment accuracy,
and the combined-constraints based methods [5], [6], [7]
for improving stitching robustness. The technique of mesh
deformation [8] is also adopted to stitching since it has high
alignment quality and is highly scalable to some specific
stitching purposes, such as stereoscopic stitching [9], [10],
[11]. Unfortunately, these methods usually can not deal with
the non-overlapping region well owing to the lack of effective
constraints, and as a result, they suffer severe projective dis-
tortions. Once number of images gets too large, the distortion
would accumulate and propagate among images, leading to
unnatural rotation, scaling and stretch.

Natural image stitching methods [12], [13], [14], [15]
are developed to reduce distortions. Up till now, a widely
acceptable fact for natural stitching is to make use of the
shape-preserving property [16] provided by the similarity
transformation. Moreover, the concept of image global sim-
ilarity prior (a.k.a., a scale factors and a 2D rotation angle
θ) [13] is proposed to be estimated to further improve the
visual quality. Inappropriate rotations between adjacent images
often induce obvious unnaturalness in results1 (as shown in

1For the presented two-image case, the zero-rotation switch in SPHP was
turned on to illustrate the problem. In practical application, the switch has
limited effect in improving panorama naturalness for general multiple-image
cases. Relevant results will be presented in the following of the paper.

Figure 1. Top: Two pairs of input images(I1, I2) and(I1, I3).
They share the same left imageI1, while I2 andI3 differ mere-
ly by a 2D rotationθ. Bottom: Two panoramas produced by
the SPHP [12].R12 andR13 have very different appearances
caused byθ.

Figure 1). Thus, the key issue for natural stitching becomes
how to properly estimate the image similarity prior. Most
existing methods [12], [15], [13] determine them with matched
feature points or line segments. Note that these schemes
merely utilize the pairwise correspondences between adjacent
images. The absence of a global constraint, which would offer
robust guidance for the similarity prior estimation, makes these
methods unstable when the overlap between images is small,
or the number of the involved images is large. As a result,
these methods produce unnatural artifacts.

Considering the mentioned issues, in this paper, we pro-
pose to take the vanishing point (VP) as an effective global
constraint, and develop a novel similarity prior estimation
method for natural image stitching. We focus on the problem
of estimatingθ, and exploit the VP guidance by taking its
two advantages: (1) utilizing the orientation clues from VPs to
estimate the initial 2D rotations for input images; (2) making
use of the global consistency of VPs in Manhattan world,
by which a novel scheme is proposed to estimate the prior
robustly. After that, the determined similarity prior is feed into
a mesh deformation framework as global similarity constraints
to stitch multiple images into a panorama with a natural look.

In summary, the main contributions of this paper are:

• We design a robust scheme to determine the image
similarity prior from the VP clues of the scene, based
on which a novel natural stitching method named VPG
is developed to improve the naturalness of output panora-
mas significantly.

• We provide a degeneration mechanism to make the pro-
posed VPG can be well-used in general scenes. When
the scene holds the Manhattan assumption, VPG manages
to produce a more natural panorama than other methods.
Otherwise, it automatically falls back to a standard stitch-
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Figure 2. A flowchart for initial rotation estimation{αi}
N
i=1. VPs are first detected through line segments extraction and

clustering. Then, VPs of different images are aligned on a unified sphere surface, on which three dominant VP directionsD
are estimated. Finally, VPs are associated with the ideal vanishing directions byD to compute{αi}

N
i=1.

ing scheme. The output still has a relatively natural look
that is not affected by wrong VP guidance.

• We conducted more analyses upon the proposed VPG
algorithm. The results further reveal that VPG has two
additional good properties: First, it is not influenced by
different reference selections; Second, it is compatible
with other high-alignment-accuracy stitching frameworks
to achieve a coordination between good naturalness and
high alignment accuracy.

Abundant quantitative and qualitative experiments both
demonstrate that the proposed vanishing point guided
method (VPG) outperforms the state-of-the-art methods, in-
cluding APAP [4], SPHP [12], AANAP [15], and GSP [13]. In-
tuitive comparisons are available from the project homapage2.

II. RELATED WORK

We briefly review the most related works in three aspect-
s: mesh-deformation based stitching methods, natural image
stitching methods, and some existing successful practices in
other fields that are associated with the VP guidance.

A. Mesh-deformation based Image Stitching

Mesh deformation technique [8] is adopted to image stitch-
ing since its flexibility. It first divides input images into a
series of uniform grid meshes, and then estimates deformed
mesh vertexes by minimizing an objective function. Various
constraints are utilized to build the objective function in order
to improve robustness and stitching quality. Early feature point
based methods [17], [11], [18] detected and matched key-
points in the overlapping region, then they achieved alignment
by warping matched points to close positions. Liet al. [5]
tailored a dual-feature model that considers both key-point and
line segment correspondences to perform a robust stitching for
low-textured scenes. Linet al. [6] were inspired by optical
flow estimation and performed alignment by minimizing the
overall intensity difference among regularly sampled points.
In addition, Xianget al. [19] locally regulated image content
by penalizing the straightness of line segments, and Linet
al. [20] preserved image structures through maintaining the
contour shapes. Although these mentioned methods achieve
good pairwise alignment accuracy, they are not suited for
natural stitching since a lack of valid constraints for the non-
overlapping region and the global image content.

2http://cvrs.whu.edu.cn/projects/VPG/

B. Natural Image Stitching

Most existing methods [21], [12], [13], [15], [10],
[22]achieved natural stitching by integrating the similarity
transformation into a spatially varying homography model.
The key issue is how to estimate the global similarity prior for
each input image. SPHP [12] determined the similarity trans-
formation through analyzing the pairwise image homography.
Then, it enhanced the naturalness via smoothly changing the
stitching model from projective to similarity transformation.
AANAP [15] first computed a bunch of 2D rotations by
feature matching, then it empirically selected the similarity
transformation with the smallest rotation angle as the optimal
one. GSP [13] solved the global similarity prior by feature
matching as well as the 3D rotation relationship between
adjacent images. VL [22] built similarity constraints for ortho-
photos by taking use of the orientations of line segment
clusters. Considering that all these methods lack an effective
global guidance, they suffer failures in challenging scenes.

C. Vanishing Point Guidance

Vanishing point (VP) [23] is widely adopted in computer
vision tasks since its predominance in two aspects. First, VPs
contain strong orientation and geometric clues of a scene
which could be useful guidance. Leeet al. [24] interpreted
the scene structure from VPs extracted from a single image.
Lee and Yoon [25] recovered the camera orientation with a
joint estimation of VPs. Huanget al. [26] exploited VPs
in image completion by detecting the planar surfaces and
regularity with VPs. Furthermore, VPs were applied in layout
estimation [27] to pre-align the image to be level with the
floor, and also were utilized to offer geometric context for
road detection and recognition [28]. Second, VPs are glob-
ally consistent in Manhattan world, and therefore provide
an effective global constraint for many optimization-based
problems which help to yield stable performance for robot
navigation [29]. Camposeco and Pollefeys [30] adopted VPs
to improve the accuracy of visual-inertial odometry, and Liet
al. [31] leveraged them to build a robust monocular SLAM
system. Inspired by these successful applications of VPs, we
apply them to natural stitching, and propose a robust similarity
prior estimation method making use of the VP guidance, as
shown in Figure 2.

III. O UR METHODOLOGY

Given N images{Ii}Ni=1, we stitch them into a natural
panorama using the mesh deformation framework as described
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previously. LetV be the set of vertexes in the uniform grid
mesh that placed on input images, the stitching process is
formulated into a mesh deformation problem through finding
the optimal warped vertex set̂V . Usually, it turns into an
optimization problem by minimizing an objective function
with the following classical form [21], [5], [13]:

E(V ) = Ea(V ) + El(V ) + Eg(V ), (1)

whereEa, El andEg denote the alignment term, the local
shape-preserving term and the global similarity term respec-
tively.

As mentioned, previous methods improve alignment accura-
cy and conserve image content by regulatingEa andEl, while
recent natural stitching methods focus onEg to produce more
natural looking panoramas.Eg is built based on the image
similarity priors (a scale factors and a 2D rotationθ), but
existing methods fail to offer a robust scheme to estimate them.
They usually treat each input image separately [22], or deter-
mine the prior merely with pairwise image correspondence
information [13], [12], [15], which are not robust enough in
practical applications. Therefore, we focus on developing a
robust similarity prior estimation method with the guidance
of VPs, in which we mainly focus on the estimation for 2D
rotations{θi}Ni=1.

A. Rotation Estimation with VP Guidance

Let G be the stitch graph ofN input images.J denotes its
edge set, in which each edge(i, j) corresponds to a pair of
adjacent images(Ii, Ij). In general, theG could be manually
specified or automatically verified by the probabilistic mod-
el [1]. Let’s defineP = {Pij |(i, j) ∈ J} as the set of matched
feature points. We apply LSD [32] to detect line segments on
Ii, and then loosely follow the scheme in [24] to find three
orthogonal VPs[vi

1,v
i
2,v

i
3] without the intrinsic parameters.

As illustrated in Figure 2, we subsequently obtain the initial
rotation estimation{αi}

N
i=1 through two steps: (1)Inter-

camera alignment. VPs from different images are first aligned
in the same reference coordinate system, in which we can
estimate dominant directions using these roughly aligned VPs.
(2) Camera-world alignment. VPs are associated with the ideal
vanishing directions in Manhattan world to produce initial
rotation estimation{αi}

N
i=1. After that, we design a robust

estimation scheme to get optimal rotation result{θi}
N
i=1.

1) Inter-Camera Alignment.:We project VPs of different
images onto a unified sphere surface in order to achieve
alignment. As a preparation, based on the matched point set
P, we first estimate the 3D rotationRi for each imageIi by
bundle adjustment method [1]. After that, without the loose of
generality, we regardIr as a reference and setW = Rr. VPs
then are projected as:

[v̂i
1, v̂

i
2, v̂

i
3] = WR

−1
i [

v
i
1

‖vi
1‖
,

v
i
2

‖vi
2‖
,

v
i
3

‖vi
3‖

]. (2)

Assuming that the scene satisfies the Manhattan world and
considering the possible parallax and estimation noises, these

aligned VPs should roughly congregate around three dominant
directionsD3×3. We propose to estimateD3×3 by:

D = argmin
D

N
∑

i=1

‖D3×3 − [v̂i
1, v̂

i
2, v̂

i
3]‖

2
F , (3)

where‖ · ‖F denotes the matrix Frobenius norm. In order to
improve the stableness, we decomposeD into D0Dt, where
D0 is the initial dominant direction hypothesis, andDt is a3×
3 relative rotation matrix. We collect two roughly orthogonal
VPs as the first two directionsd1 andd2 in D0. They produce
the third direction byd3 = d1 × d2. After that,d2 is revised
by d2 = d1 × d3 to ensure the orthogonality so that we get
a complete dominant direction hypothesisD0 = [d1,d2,d3].
GivenD0, we can estimateDt by:

Dt = argmin
Dt

N
∑

i=1

‖D0Dt − [v̂i
1, v̂

i
2, v̂

i
3]‖

2
F . (4)

It is obvious that solving Equation 4 is much more stable
than directly optimizing Equation 3. It can be effectively
optimized by Gauss-Newton iteration method. After traversing
all possible dominant direction hypotheses, we obtain the final
result with the minimal residual error as the optimal dominant
directionD̂ = [d̂1, d̂2, d̂3].

2) Camera-to-World Alignment.:Let the three global VPs
associated with three dominant directions in Manhattan world
be [vw

1 ,v
w
2 ,v

w
3 ] = [[1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T]. We assume

that people rarely twist the camera severely relative to the
horizon when capturing a picture, which can be a relative loose
assumption than the one in [1] and [13]. Hence, we linkD̂

with [vw
1 ,v

w
2 ,v

w
3 ] by:

M = [m1,m2,m3], which is determined by

mi = argmin
vw
j

‖d̂i − v
w
j ‖

2, i, j = 1, 2, 3. (5)

Meanwhile, we rearrange[v̂i
1, v̂

i
2, v̂

i
3] for Ii in order to make

them correspond tôD, that is,v̂i
k ↔ d̂k, k = 1, 2, 3. Then, the

transformation from thei-th camera to the global Manhattan
world is formulated as:

R
w
i = M[v̂i

1, v̂
i
2, v̂

i
3]

−1, (6)

whereRw
i is a 3× 3 rotation matrix. We decompose it to get

αi, which is a 2D rotation angle with respect toz axis.
3) Robust Estimation.:Instead of directly takingαi as θi,

we propose to estimate{θi}Ni=1 through minimizing an objec-
tive function with regardingαi as the data term. In addition,
we consider the relative rotation between adjacent images as
the smoothness term. Specifically, for image pair(Ii, Ij), the
relative 2D rotationβi,j is obtained by decomposingRjR

−1
i .

We representαi by a unit 2D vector(φi, ωi)
T, and the rotation

{θi = (ui, vi)
T}Ni=1 are obtained by minimizing:

N
∑

i=1

‖

[

ui
vi

]

−

[

φi
ωi

]

‖2+λ
∑

(i,j)∈J

‖R(βi,j)

[

ui
vi

]

−

[

uj
vj

]

‖2, (7)

whereR(βi,j) denotes the2D rotation matrix specified by
βi,j , and λ = 10.0 is a balance weight. In Equation 7, we
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Figure 3. A illustration of two strategies adopted for robustly
estimating{θi}Ni=1. Left: Given the VPs alignment result and
dominant directions, images whose VPs has large residuals
are marked as outliers. Right: Initial rotations are propagated
along the stitching graph, and are weighted using a path voting
scheme.

consider eachαi equally, which is easily affected by possible
noises existing in{αi}

N
i=1. Therefore, as shown in Figure 3,

two strategies are further designed to deal with this problem.
Outlier rejection. Previously, we have roughly aligned VPs

of different images and have obtained their three dominant
directionsD̂. Starting from the global consistency of VPs in
Manhattan world, we compute the residual differenceei for
Ii according to its[v̂i

1, v̂
i
2, v̂

i
3] and D̂. The image whoseei

is larger than a thresholdτ is marked as an outlier. We only
computeαi for inliers, and adopt them as the data term in
Eq. 7 to estimate the image similarity prior.

Path voting. The scheme of outlier rejection actually is a
hard constraint. It has to face a dilemma that a too small
τ may wrongly filter out many images. Otherwise, it may
introduce some fallaciousαi. A path voting scheme acts as a
soft constraint to cope with this dilemma.

As shown in Figure 3, given the stitching graphG with
N images, we collect all valid pathsPi = {pki }

ci
k=1 within

a maximal lengthfmax for each inlier imageIi, where ci
denotes the total number of valid paths forIi. pki starts from
Ii and ends at its neighboring inlier images. A path is valid
only when it does not pass through any outlier image. We
then dividePi into two parts: the supporting setP+

i and the
opposing setP−

i . Such a division is achieved based on the
relative rotation angleβi,j between adjacent images and by
judging eachpki whether it supports the estimation resultαi

for imageIi or not. Forpki ∈ P+
i , we directly take its path

lengthL(pki ) as the supporting lengthS(pki ). Otherwise, its
opposing lengthO(pki ) is calculated asfmax + 1 − L(pki ).
Then, we weight the corresponding data term withψi, which
is defined as:

ψi = σ(

∑

p∈P+

i
S(p)

∑

p∈P
+

i
S(p) +

∑

p∈P
−

i
O(p)

), (8)

where σ(·) is a sigmoid-form non-linear mapping function.
After the above two schemes, the data term in Eq. 7 is
developed into:

∑

Ii∈Ψ

ψi‖

[

ui
vi

]

−

[

φi
ωi

]

‖2, (9)

where Ψ denotes inlier images.{θi}Ni=1 are obtained by
minimizing Equation 7.

B. Stitching by Mesh Deformation

After collecting {θi}
N
i=1, we need to determine the scale

factor{si}Ni=1 to build a complete global similarity constraint.
Chen and Chuang [13] propose to estimatesi by the ratio
of focal length, yet this scheme relies too much on camera
intrinsic matrix. In contrast, we resort to the matched point set
P = {Pij |(i, j) ∈ J} to determinesi. For a pair of adjacent
images(Ii, Ij), we first estimate their relative scaleηij by:

ηij =
c(hi)

c(hj)
, (10)

wherehi andhj are two convex hulls that are determined by
Pij , andc(·) returns the perimeter of a convex hull. After that,
we estimate the absolute scalesi for Ii by solving:

argmin
s

∑

(i,j)∈J

‖ηijsj − si‖
2, s.t.

N
∑

i=1

si = N. (11)

It is a quadratic constrained minimization problem, and can
be efficiently solved by any linear system. With{θi}Ni=1 and
{si}

N
i=1, we take the deformation objective function (Eq. 1)

from [13] as our baseline, but boost itsEg with our improved
image similarity prior. The final stitched panorama eventually
is generated by texture mapping technique.

IV. EXPERIMENTS AND RESULTS

In this section, we compared our proposed VPG with four
state-of-the-art methods: APAP [4], SPHP [12], AANAP [15],
and GSP [13]. Besides the widely used qualitative comparison
manner, two metrics were designed based on the collected
synthetic image sets to quantitatively asses the panorama
naturalness produced by different methods. It is encouraged
to browse our project homepage, in which more vivid results
are provided for clear observation and comparison.

A. VPG Dataset

36 sets of images were collected to form the VPG dataset.
As shown in Figure 4, it includes12 sets of synthetic images
and24 sets of real images. All synthetic images were generat-
ed through 3Ds Max rendering3 hence the associated camera
parameters are known. All real images were captured by
ourselves with a mobile phone. The VPG dataset contains both
indoor scenes and outdoor street-view scenes. Specifically,12
synthetic sets are composed of6 indoor cases and6 street-view
cases. Similarly,24 real sets consist of12 indoor scenes and12
street-view scenes. More details can be found in Figure 4. It is
noteworthy that all images were carefully collected to ensure
that they satisfy the Manhattan assumption. The number of
images involving in stitching in each set ranges from5 to 72.

B. Quantitative Metrics

Before specific experiments, two quantitative metrics first
are introduced for the assessment of panorama naturalness.
Note that comprehensively evaluating the panorama quality is
still an open research problem [33], [34], and it is not the main
concern of this paper either. Therefore, we simply start from

3https://www.autodesk.com/
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Figure 4. An overview of the VPG dataset. It consists of12 synthetic sets (01-12) and24 real sets (13-36). 01-06 and 13-24
are indoor cases. 07-12 and 25-36 are outdoor street-view cases.

Stitched panorama

Figure 5. An illustration of the proposed GDIC metric. With
the assist of external parameters, we approximate the direction
of image content by a 2D angleγ with respect to the absolute
vertical direction. Accordingly, we approximate the direction
of stitched image content byκ, the orientation of the image
bounding rectangle. The GDIC then measures the average
difference between these two types of directions.

the observation that a panorama produced by stitching methods
usually suffers two kinds of unnaturalness: local projective
distortion, and global unnatural rotation. Accordingly, we
put forward two indexes for quantitative evaluation: Local
Distortion (LD) and Global Direction InConsistency (GDIC).

1) LD-index: LD is used to evaluate the local projective
distortion. LetQ be a quad with four vertexes, the local ho-
mographyH can be computed from its original and deformed
coordinates. We first use a similar way as in [12] to measure
the local area change at image position(x, y):

M(H, (x, y)) = detJH(x, y), (12)

whereJH is the Jacobian ofH . We then calculate the mean
µQ and the standard deviationσQ of M from all pixels within
Q, and take the coefficient of variation (c.v.)σQ/µQ as the
measurement of projective distortion forQ. Subsequently, for
Ii, we compute the c.v. for all quads that located on the
non-overlapping region, and take their average value as the
measurementDi for Ii. Finally, we define the LD index as:

LD = max(D1,D2, ...,DN ). (13)

2) GDIC-index: GDIC aims to measure the global unnatu-
ral rotation. Assuming that the external parameters are known

for Ii, as shown in Figure 5, we compute a rotationγi for
Ii on the image plane. It is a 2D angle between the camera
y-axis and the absolute vertical direction.γi approximates the
direction of image content in the world coordinate system. Ac-
cordingly, on the output panorama, we estimate the bounding
rectangle with the minimal area for deformed vertexes ofIi,
and take the rectangle orientationκi as the direction ofIi after
stitching. We think that the relative direction of image content
should be preserved as much as possible if images are stitched
with a natural look, and the GDIC then is defined as:

GDIC =

∑N

i=1,i6=r |(κi − κr)− (γi − γr)|

N − 1
, (14)

wherer denotes the selected reference for relative direction
computation.Ir is fixed when computing GDIC for different
methods. Since the proposed GDIC requires the external
parameters, it is available only for synthetic image data in
our experiments.

C. Comparison with APAP [4] and SPHP [12]

We first compared VPG with two early state-of-the-art
algorithms: APAP [4] and SPHP [12]. They were tested using
the source code provided by the authors. Since APAP and
SPHP have limitations on the field of view, we had to reduce
the number of involved images from tens to3-9 during our ex-
periments. Table I reports the quantitative results on synthetic
sets04-09. VPG outperforms other two competing methods
in both LD and GDIC metrics. Figure 6 further provides
qualitative comparisons on one synthetic set (04) and one
real set (29). As we can see, panoramas produced by APAP
and SPHP exhibit severe projective distortions and unnatural
rotations. Adjusting the zero-rotation switch for SPHP has
very limited effects in improving naturalness. In contrast, the
proposed VPG produces panoramas with apparently higher
visual quality. The qualitative comparison also is consistent
with the quantitative evaluation.

D. Comparison with AANAP [15] and GSP [13]

We compared the proposed VPG with two recent state-of-
the-art natural stitching methods: AANAP [15] and GSP [13].
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Figure 6. Qualitative comparisons with APAP [4] and SPHP [12]. (a) results from APAP. (b) results from SPHP with the
zero-rotation switch on. (c) results from SPHP* with the zero-rotation switch off. (d) results from our VPG. The corresponding
LD values are given in red text.

Table I. Quantitative comparisons with APAP [4] and SPH-
P [12] on synthetic image set04-09. SPHP* denotes the zero-
rotation switch is turned off during stitching.

Metrics Methods 04 05 06 07 08 09

LD (×10−2) ↓

APAP 6.69 8.36 6.70 4.01 6.21 5.55
SPHP 2.20 3.93 7.32 2.66 3.07 2.32
SPHP* 2.29 2.08 3.17 2.81 2.29 2.16
VPG 0.82 1.35 1.11 1.08 0.19 1.15

GDIC (deg)↓

APAP 18.9422.7611.4411.484.76 7.02
SPHP 11.2120.16 5.32 4.92 8.0613.27
SPHP* 8.75 3.94 6.58 8.52 6.3012.70
VPG 1.21 0.81 0.95 0.95 1.16 2.13

GSP was tested using the source code provided by authors and
both the 2D solution and the 3D solution were tested. AANAP
was tested using our own re-implementation. Table II offers
quantitative comparisons on synthetic image sets01−12. The
proposed VPG has a comparable performance with AANAP
and GSP in LD metric since they all share a similar mesh
deformation framework to reduce projective distortion. More-
over, in most cases, VPG steadily produces the smallest GDIC
values, which means the best global natural look among four
methods of comparison. Figure 7 and Figure 8 further present
typical qualitative comparisons on synthetic and real images
respectively, from which the superiority of proposed VPG
can be observed intuitively. AANAP empirically estimates
the image rotation with the smallest angle, GSP-2D assumes
the zero rotation for images, and GSP-3D determines the
rotation with pairwise 3D rotation relationships. Their results
exhibit obvious unnaturalness since the lack of effective global
constraints. In contrast, the proposed VPG manages to improve
the panorama naturalness significantly.

E. User Study

Since naturalness is a subjective feeling, we further conduct-
ed a user study to investigate whether the proposed VPG is
preferred by users. In practice, we invited 20 participants, in-
cluding 10 researches/students with computer vision/graphics

37.4 45.6
76.1 91.4

AANAP GSP-2D GSP-3D VPG020
4060
80100

Averag
e Score

Figure 9. User study result. The average scores of4 methods
from 20 participants.

backgrounds and remaining 10 volunteers outside this com-
munity. We randomly selected 20 groups of stitching results
in different scenes (e.g., indoor and street-view) for the user
study. There were4 unannotated panoramas in each group that
were produced by4 methods: AANAP, GSP-2D, GSP-3D, and
our VPG. Panoramas were shown on a screen in sequence,
and the user was allowed to switch images back and forth
for a convenient comparison. Then, each participant ranked
four results in each group, and assigned each panorama with
the corresponding score (from rank 1 to rank 4, scores varies
from 5 to 2). Figure 9 shows the user study results. The VPG is
substantially preferred. In addition, it indicates to some extent
that the adopted two metrics, LD and GDIC, are consistent
with the user’s subjective evaluation.

F. Validation of the Robust Estimation Scheme

VPG determines the image similarity prior using a two-
step robust estimation scheme. In this section, we hope to
quantitatively valid the effectiveness of this step. Using the
VPG synthetic image set01-12 and given the VP extraction
results from different images, we manually added random
noises to the VP coordinates before adopting them to extract
VPs guidance. Then, we compared the associated GDIC values
produced by VPG without the robust estimation scheme and
by VPG with the robust estimation scheme. Table III reports
the comparison results when gradually increasing the noise
ratio from 0% to 20%. As we can see, metric values from



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Table II. Quantitative comparisons with AANAP [15] and GSP [13] on12 sets of synthetic images. 01-06 are indoor scenes,
and 07-12 are outdoor street-view scenes.

Metrics Methods 01 02 03 04 05 06 07 08 09 10 11 12

LD (×10−2) ↓

AANAP 1.21 1.56 1.20 2.94 1.47 1.10 0.94 5.17 5.95 1.50 1.14 0.89
GSP-2D 1.48 1.73 1.82 2.19 1.85 1.28 1.00 3.00 2.68 2.04 1.01 0.74
GSP-3D 1.41 1.60 1.59 1.81 1.84 1.43 1.05 2.06 2.69 1.35 1.11 0.67

VPG 1.44 1.45 1.57 2.06 1.68 1.53 0.93 2.69 2.50 1.27 1.19 0.73

GDIC (deg)↓

AANAP 2.26 1.06 2.33 8.72 7.24 8.60 2.75 9.49 25.06 4.37 2.59 3.25
GSP-2D 6.06 2.07 1.66 2.77 6.20 1.63 2.50 2.70 4.26 1.23 2.22 1.76
GSP-3D 4.54 2.78 3.41 1.05 1.83 1.05 3.73 2.05 0.86 1.11 1.70 1.18

VPG 0.73 0.49 0.77 0.49 0.55 0.74 0.72 0.50 0.52 1.41 0.81 0.63

(a)

(b)

(c)

(d)

Figure 7. Qualitative comparisons with AANAP [15] and GSP [13] on synthetic set03 and08. (a) results from AANAP. (b)
results from GSP-2D. (c) results from GSP-3D. (d) results from the proposed VPG. The yellow points indicating the anchor
directions that have been aligned to the red horizontal lines for better visual comparison. The yellow arrows hightlight the
unnatural artifacts. The same marks are adopted in the following figures.

VPG (w/o) increases significantly as the noises increase while
values from VPG (w/) keep relatively stable in most cases.
It demonstrates that the proposed robust estimation scheme
effectively ensures the robustness of VPG and maintains the
consistently high naturalness of the output panoramas.

V. M ORE ANALYSIS

We further analyzed the performance of VPG in four main
aspects: (1) the adaptability for general scenes where the
Manhattan assumption may not hold; (2) the stability for
reference selection; (3) the scalability for higher alignment
accuracy; (4) the time efficiency.

A. Adaptability for General Scenes

We explored the possibility that VPG adaptively falls back
to a regular stitching scheme without using the VP clues when

the scene disobeys the required Manhattan assumption. Since
we have projected the VPs from different images on a unified
sphere surface in previous Sections, we think these roughly
aligned VPs can reflect the regularity of the scene.

Given a set of aligned VPs, we define its associated VP
divergence as follows:

ε =
1

ρ

∑

v̂i∈inlier

‖v̂i − d̂i‖
2, (15)

whered̂i is the dominant direction of̂vi that has been obtained
previously,ρ denotes the inlier ratio that is estimated in the
outlier rejection step. We consider a scene with a smallε as a
Manhattan scene and perform the stitching process using the
complete VPG scheme. Otherwise, we alternatively remove
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(a)

(b)

(c)

(d)

Figure 8. Qualitative comparisons with AANAP [15] and GSP [13] on real image set16 and33. (a) results from AANAP. (b)
results from GSP-2D. (c) results from GSP-3D. (d) results from our VPG.

Table III. Quantitative validation of the proposed robust estimation scheme for the image similarity prior. The GDIC values
of 12 synthetic image sets are reported.

Noises Methods 01 02 03 04 05 06 07 08 09 10 11 12

0% noises
VPG (w/o robust scheme)0.73 0.49 0.77 0.82 1.01 0.74 0.72 0.65 0.96 2.41 0.81 0.63
VPG (w/ robust scheme) 0.73 0.49 0.77 0.49 0.55 0.74 0.72 0.50 0.52 1.41 0.81 0.63

10% noises
VPG (w/o robust scheme)2.97 0.44 1.28 1.74 0.90 0.80 0.65 1.65 0.81 2.30 1.01 1.79
VPG (w/ robust scheme) 0.53 0.44 0.64 0.84 0.59 0.65 0.65 0.54 0.38 1.37 0.94 1.53

20% noises
VPG (w/o robust scheme)4.74 2.57 4.47 2.29 2.47 2.67 1.67 2.21 3.19 8.55 1.65 1.13
VPG (w/ robust scheme) 0.56 0.42 0.63 0.47 0.57 0.63 0.74 0.71 0.56 3.75 0.94 0.85

the VP guidance4 in Eq. 7 to make the proposed stitching
algorithm fall back to the regular scheme as in [13].

In order to determine the threshold forε, we collected
another130 sets of image. Half of them were captured in
Manhattan scenes, and another half of them were captured in
natural scenes (non-Manhattan). Their VP divergence values
were computed according to Eq. 15 and are presented in
Figure 10. As we can see,ε from a Manhattan scene usually
is small and tends to be limited in a narrow range. On the
contrary,ε of a natural scene usually has a relatively large
value. ε0 = 0.10 seems to be a valid sentry threshold to
distinguish the Manhattan scenes from non-Manhattan scenes.

To verify the adaptability of VPG when resorting toε,
we hope to simulate a practical VPG application scenario
in which the regularity prior about the scene (Manhattan or

4Thanks to the straighten strategy in [1], Eq. 7 is solvable even we weaken
or remove the VP-relevant data term.

non-Manhattan) is unknown and so we tested VPG on the
GSP dataset [13]. It consists of42 image sets and contains
nearly all popular images for stitching algorithm evaluation.
Since the Manhattan assumption is not necessarily satisfied in
GSP dataset, as presented in Figure 10, the associated VP
divergences are distributed on both sides ofε0. Figure 11
and Figure 12 present typical results on GSP dataset. On the
one hand, when theε of a scene is small, VPG manages to
improve the panorama naturalness by utilizing the reliable VPs
guidance. On the other hand, if theε is large which indicates
the scene is prone to be a non-Manhattan scene, VPG still
can produce natural looking panoramas by weakening the
extracted VPs guidance. Note that all results are produced
by VPG automatically without any manual intervention. It
demonstrates that the proposed VPG can be well applied
in general (Manhattan or non-Manhattan) scenes. Figure 16
presents more stitching results on GSP dataset.
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 Non-Manhattan

(a)

 GSP Dataset

(b)

Figure 10. (a) VP divergence distributions of Manhattan scenes
and Non-Manhattan scenes. (b) The associated VP divergence
distributions of the adopted VPG dataset and GSP dataset.
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Figure 13. Quantitative evaluations of the influence of refer-
ence selection on different stitching methods. (a)-(d) present
the results on VPG-03, 05, 08 and11 respectively.

B. Stability for Reference Selection
Reference selection is an important but challenging issue

for image stitching. Many algorithms are sensitive to this
step and as a result, they may yield significantly different
panoramas when different images are selected as the reference.
Selecting the optimal reference is not easy even many methods
have been proposed in the past decade [35], [36], [37], [38].
Taking 4 sets of synthetic images as an example, Figure 13
reports the GDIC quantitative results of VPG when different
images are selected as the reference during the stitching
process. As we can see, results from GSP-2D are severely
affected by reference selection since different reference will
lead to different images with the zero-rotation, which makes
the panorama appearance change significantly. In contrast, the
proposed VPG produces much more stable GDIC values no
matter which image is chosen as the reference. Note that
results from GSP-3D have a similar stability with VPG, but the
corresponding GDIC values are much larger which indicate a
worse panorama naturalness.

C. Scalability for Higher Alignment Accuracy
Except for naturalness, alignment accuracy is another es-

sential issue that is widely considered when designing a
stitching algorithm. Some methods [3] achieve high panorama

Table V. Average Runtime of different stitching methods.

Dataset AANAP GSP VPG
VPG Dataset 109.44s 45.82s 47.82s
GSP Dataset 53.63s 23.55s 29.04s

naturalness at the expense of a decreased alignment accuracy.
In previous experiments and analysis, for a fair compari-
son, VPG follows a similar scheme as in [13] to extract
the alignment constraints. Although it inherits the powerful
alignment capability provided by APAP [4], the alignment
accuracy can be further increased by many recent advanced
stitching frameworks like DFW [5] and GCPW [39]. In this
section, we show that the proposed VPG is scalable for
achieving a higher alignment accuracy. In other words, the
naturalness improvement achieved by VPG is compatible with
high alignment accuracy. Figure 14 and Figure 15 present
two groups of panoramas produced by different methods and
report the associated GDIC values and the MSE of alignment
accuracy [7], [40], [20], [6]. By combining VPG with DFW
and GCPW, the output panoramas not only have more natural
looks than GSP, but also have higher alignment accuracy than
both GSP and the original VPG.

D. Time Efficiency
To evaluate the stitching efficiency of VPG, Table V reports

the average runtime of AANAP, GSP, and VPG on 36-set
VPG dataset and 42-set GSP dataset respectively. Without any
acceleration technology, the proposed VPG method slightly
increases the runtime by about10% when compared with
GSP but it significantly improves the panorama naturalness.
Besides, VPG is approximately2 times faster than AANAP
with a much better panorama naturalness.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a vanishing-point-guided stitching
method called VPG. VPG successfully exploits the predom-
inance of VPs to achieve a robust estimation for image
similarity prior, which finally leads to a more natural looking
panorama. Quantitative and qualitative comparisons on syn-
thetic and real images combined with a user study demonstrate
VPG’s superiority over other state-of-the-art methods. More
analyses upon VPG show that although VPG is designed for
Manhattan scenes, it possesses good adaptability for general
scenes through a degradation mechanism. Meanwhile, due to
the introduction of global VPs, VPG outputs stable panoramas
that are free from different reference selections. Moreover,
VPG is scalable and compatible with other advanced stitch-
ing frameworks to achieve a coordination between panorama
naturalness and alignment accuracy. We also observed some
limitations for VPG. Firstly, VPG is prone to fall back to the
non-Manhattan scene when the number of involved images is
small (e.g., 2 or 3). Because in such cases, the VP consisten-
cy usually is not remarkable for similarity prior estimation.
Secondly, VPG may fail when facing dramatic depth variation
or large parallax, which could influence the VPs alignment
results and cause unnatural artifacts. Note that extremely large
parallax is also challenging for most other existing stitching
approaches and is the issue that needs to be overcome in the
future work.
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(a) (b) (c) (d)

Figure 11. Qualitative comparisons with AANAP [15] and GSP [13] on 2 GSP sets. (a) results from AANAP. (b) results from
GSP-2D. (c) results from GSP-3D. (d) results from VPG. Top row is a indoor scene with35 input images and the associate
ε = 0.044 ≤ ε0. Bottom row is a outdoor scene with5 input images andε = 0.048 ≤ ε0.

(a)

(b)

(c)

(d)

Figure 12. Qualitative comparisons with AANAP [15] and GSP [13] on one GSP set. (a) results from AANAP. (b) results
from GSP-2D. (c) results from GSP-3D. (d) results from our VPG. It is a scene with15 input images andε = 0.161 > ε0.
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(a) GSP-3D (GDIC: 4.54, MSE: 11.87) (b) VPG (GDIC: 0.73, MSE: 11.97)

(c) VPG+DFW (GDIC: 1.00, MSE: 10.89) (d) VPG+GCPW (GDIC: 1.09, MSE: 10.19)

Figure 14. Qualitative comparisons between GSP-3D [13], theoriginal VPG, VPG+DFW and VPG+GCPW on VPG
synthetic set01. By combining VPG with DFW and GCPW, the alignment accuracy gets improved significantly without
any obvious loss of panorama naturalness.

(a) GSP-3D (-, MSE: 6.50) (b) VPG (-, MSE: 6.15)

(c) VPG+DFW (-, MSE: 5.93) (d) VPG+GCPW (-, MSE: 5.49)

Figure 15. Qualitative comparisons between GSP-3D [13], theoriginal VPG, VPG+DFW and VPG+GCPW on VPG
real set13. By combining VPG with DFW and GCPW, the alignment accuracy gets improved significantly without any
obvious loss of panorama naturalness. Note that the GDIC values are unavilable for real image data.
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Table IV. Basic information about the12 panoramas (a)-(l) presented in Figure 16. Note that theε values from (a)-(h) are less
thanε0 while values from (i)-(l) are larger thanε0.

No. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Image Numbers 2 4 5 6 11 3 5 21 10 5 7 15

ε 0.0204 0.0019 0.0068 0.0005 0.0740 0.0002 0.0114 0.0781 0.1917 0.1291 0.1464 0.2022

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

(j)

(k) (l)

Figure 16. More stitching results on GSP dataset.
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