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Abstract—Recently, works on improving the naturalness of
stitching images gain more and more extensive attention. Previous
methods suffer the failures of severe projective distortion and
unnatural rotation, especially when the number of involved
images is large or images cover a very wide field of view. In
this paper, we propose a novel natural image stitching method,
which takes into account the guidance of vanishing points to
tackle the mentioned failures. Inspired by a vital observation
that mutually orthogonal vanishing points in Manhattan world
can provide really useful orientation clues, we design a scheme
to effectively estimate prior of image similarity. Given such
estimated prior as global similarity constraints, we feed it into

natural stitching performances. Compared with other existing . : . )
methods, including APAP, SPHP, AANAP, and GSP, our method | €Y share the same left imagg while I, and; differ mere

achieves state-of-the-art performance in both quantitative and 1Y by @ 2D rotationd. Bottom: Two panoramas produced by
qualitative experiments on natural image stitching. the SPHP [12].R:, and R,3 have very different appearances

caused byj.

Index Terms—Natural Image Stitching, Vanishing Point, Glob-
al Similarity Prior.
Figure 1). Thus, the key issue for natural stitching becomes
o ) . how to properly estimate the image similarity prior. Most
Image stitching is a classical computer vision task thalissing methods [12], [15], [13] determine them with matched
combines multiple images into a panorama with a wider fieldla1,re points or line segments. Note that these schemes
of view. Methods started to flourish since 2007, when Browfie ey utilize the pairwise correspondences between adjacent
and Lowe [1] proposed to use SIFT features [2] to fit fna5es. The absence of a global constraint, which would offer
global homography model for stitching. Since then, varioygy, st guidance for the similarity prior estimation, makes these
methods were developed to further improve the stitchingaihoqs unstable when the overlap between images is small,
performance, including the spatially varying methods [3], [4); the number of the involved images is large. As a result,
with a higher degree of freedom for good alignment accuraglese methods produce unnatural artifacts.
and the combined-constraints based methods [5], [6], mConsidering the mentioned issues, in this paper, we pro-

;orf |mpr5[)_vmgsst_|tch||ng rgbutstr(;etss. tjl;hﬁ_ technlqui r?f n;?%l;se to take the vanishing point (VP) as an effective global
eformation [8] Is also adopted to stitching since it has hi nstraint, and develop a novel similarity prior estimation

a'?g”’.“e”t quality and is highly scalabl_e to. some speci ethod for natural image stitching. We focus on the problem
stitching purposes, such as stereoscopic stitching [9], [1 estimatingd, and exploit the VP guidance by taking its

{ﬁl]' Unfortu|r1ate!y, thes_e met?lods. usm:alg c?n I?o:‘ d;al ,:N'E o advantages: (1) utilizing the orientation clues from VPs to
€ non-overiapping region Wetl owing to the fack ot eNectiviqi - ata the initial 2D rotations for input images; (2) making

constraints, and as a result, they suffer severe projective e of the global consistency of VPs in Manhattan world,

: ; Ve diz
tortions. Once number of images gets too Igrge, the dlstc_>rt| (? which a novel scheme is proposed to estimate the prior
would accumulate and propagate among images, Ieadlngr ?)ustly. After that, the determined similarity prior is feed into

unnatural rotation, scaling and stretch. a mesh deformation framework as global similarity constraints

Natural image stitching _meth_ods [12], _[13]’ [14], [_15]to stitch multiple images into a panorama with a natural look.
are developed to reduce distortions. Up till now, a widely In summary. the main contributions of this paper are-
acceptable fact for natural stitching is to make use of the Y. pap '
shape-preserving property [16] provided by the similarity « We design a robust scheme to determine the image
transformation. Moreover, the concept of image global sim- similarity prior from the VP clues of the scene, based
ilarity prior (a.k.a, a scale factos and a 2D rotation angle on which a novel natural stitching method named VPG
6) [13] is proposed to be estimated to further improve the is developed to improve the naturalness of output panora-
visual quality. Inappropriate rotations between adjacent images mas significantly.
often induce obvious unnaturalness in resulss shown in  « We provide a degeneration mechanism to make the pro-

posed VPG can be well-used in general scenes. When

IFor the presented two-image case, the zero-rotation switch in SPHP was the scene holds the Manhattan assumption, VPG manages
turned on to illustrate the problem. In practical application, the switch has ’

to produce a more natural panorama than other methods.

limited effect in improving panorama naturalness for general multiple-image - ) ; "
cases. Relevant results will be presented in the following of the paper. Otherwise, it automatically falls back to a standard stitch-

|. INTRODUCTION
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Figure 2. A flowchart for initial rotation estimatiofia;}Y ;. VPs are first detected through line segments extraction and
clustering. Then, VPs of different images are aligned on a unified sphere surface, on which three dominant VP dipections
are estimated. Finally, VPs are associated with the ideal vanishing directiobstbycompute{c;} ¥ ;.

ing scheme. The output still has a relatively natural looR. Natural Image Stitching

that is not affected by wrong VP guidance. Most existing methods [21], [12], [13], [15], [10],
 We conducted more analyses upon the proposed VP$]achieved natural stitching by integrating the similarity
algorithm. The results further reveal that VPG has twgansformation into a spatially varying homography model.
additional good properties: First, it is not influenced byhe key issue is how to estimate the global similarity prior for
different reference selections; Second, it is compatibigych input image. SPHP [12] determined the similarity trans-
with other high-alignment-accuracy stitching frameworkgmation through analyzing the pairwise image homography.
to achieve a coordination between good naturalness afien, it enhanced the naturalness via smoothly changing the
high alignment accuracy. stitching model from projective to similarity transformation.
Abundant quantitative and qualitative experiments bo#ANAP [15] first computed a bunch of 2D rotations by
demonstrate that the proposed vanishing point guidéshture matching, then it empirically selected the similarity
method (VPG) outperforms the state-of-the-art methods, itransformation with the smallest rotation angle as the optimal
cluding APAP [4], SPHP [12], AANAP [15], and GSP [13]. In-one. GSP [13] solved the global similarity prior by feature
tuitive comparisons are available from the project homapagenatching as well as the 3D rotation relationship between
adjacent images. VL [22] built similarity constraints for ortho-
Il. RELATED WORK photos by taking use of the orientations of line segment
We briefl . . gusters. Considering that all these methods lack an effective
y review the most related works in three aspec iobal quidance. th fer failures in challenain n
s: mesh-deformation based stitching methods, natural ima%g al guidance, they sutier faiures in challenging scenes.
stitching methods, and some existing successful practicesdn

; . : _ Vanishing Point Guidance
other fields that are associated with the VP guidance.

Vanishing point (VP) [23] is widely adopted in computer
vision tasks since its predominance in two aspects. First, VPs
A. Mesh-deformation based Image Stitching contain strong orientation and geometric clues of a scene

Mesh deformation technique [8] is adopted to image stitcihich could be useful guidance. Let al. [24] interpreted
ing since its flexibility. It first divides input images into athe scene structure from VPs extracted from a single image.
series of uniform grid meshes, and then estimates defornie@® and Yoon [25] recovered the camera orientation with a
mesh vertexes by minimizing an objective function. Variouint estimation of VPs. Huangt al. [26] exploited VPs
constraints are utilized to build the objective function in ordéf image completion by detecting the planar surfaces and
to improve robustness and stitching quality. Early feature poifggularity with VPs. Furthermore, VPs were applied in layout
based methods [17], [11], [18] detected and matched kesstimation [27] to pre-align the image to be level with the
points in the overlapping region, then they achieved alignméffor, and also were utilized to offer geometric context for
by warping matched points to close positions.dtial. [5] road detection and recognition [28]. Second, VPs are glob-
tailored a dual-feature model that considers both key-point ally consistent in Manhattan world, and therefore provide
line segment correspondences to perform a robust stitching &y effective global constraint for many optimization-based
low-textured scenes. Liet al. [6] were inspired by optical problems which help to yield stable performance for robot
flow estimation and performed alignment by minimizing thavigation [29]. Camposeco and Pollefeys [30] adopted VPs
overall intensity difference among regularly sampled pointt improve the accuracy of visual-inertial odometry, ancet.i
In addition, Xianget al. [19] locally regulated image contental. [31] leveraged them to build a robust monocular SLAM
by penalizing the straightness of line segments, and dtin System. Inspired by these successful applications of VPs, we
al. [20] preserved image structures through maintaining ti&®ply them to natural stitching, and propose a robust similarity
contour shapes. Although these mentioned methods achigvi@r estimation method making use of the VP guidance, as
good pairwise alignment accuracy, they are not suited fahown in Figure 2.
natural stitching since a lack of valid constraints for the non-

. . . [1l. OUR METHODOLOGY
overlapping region and the global image content.

Given N images{/;}Y,, we stitch them into a natural
2http://cvrs.whu.edu.cn/projects/VPG/ panorama using the mesh deformation framework as described
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previously. LetV be the set of vertexes in the uniform gridaligned VPs should roughly congregate around three dominant
mesh that placed on input images, the stitching processdisectionsDs 3. We propose to estimai®s,s by:

formulated into a mesh deformation problem through finding N
the optimal warped vertex sét. Usually, it turns into an D — are min Dawa — [¥0 v vi12 3
optimization problem by minimizing an objective function &5 ZH 3x3 = V1,9, V3l ®
with the following classical form [21], [5], [13]:

=1
where| - || denotes the matrix Frobenius norm. In order to
E(V)=E.,(V)+ E(V) + E,(V), (1) improve the stableness, we decomp@ento DoD;, where
Dy is the initial dominant direction hypothesis, abd is a3 x
where E,, E; and E, denote the alignment term, the locaB relative rotation matrix. We collect two roughly orthogonal
shape-preserving term and the global similarity term respedPs as the first two direction$; andds in Dy. They produce
tively. the third direction byds = d; x d». After that,d is revised
As mentioned, previous methods improve alignment accuf?y d2 = d; x ds to ensure the orthogonality so that we get
cy and conserve image content by regulatiigand E;, while a complete dominant direction hypothe®ls = [d;, d2, d3].
recent natural stitching methods focus Bp to produce more Given Dy, we can estimat®, by:

natural looking panoramagdy, is built based on the image N
similarity priors (a scale factos and a 2D rotatiord), but D, = argmmz DD, — [¥,vi, vi]|3. (4)
existing methods fail to offer a robust scheme to estimate them. D, =

They usually treat each |r_1put image s_eparately [22], or deuf‘tr'is obvious that solving Equation 4 is much more stable
mine the prior merely with pairwise image corresponden

: ) . %Ran directly optimizing Equation 3. It can be effectively
information [13], [12], [15], which are not robust enough in, ... by Gauss-Newton iteration method. After traversing

. T .0
Fésﬁgfasliriﬁ;)rl:fatlc;ilsr. ;Tﬁrrlzft?gﬁ’ r\r:v:[hfgguv?/i tﬂntr?:ved?é);rl%aiﬁ) possible dominant direction hypotheses, we obtain the final
y P 9 esult with the minimal residual error as the optimal dominant

of VPs, in which we mainly focus on the estimation for 2 directionD — [dl,&g,&g].

i N
rotations{6;}; . 2) Camera-to-World Alignment.Let the three global VPs
associated with three dominant directions in Manhattan world
be [vi, v§, v¥] = [[1,0,0]T,[0,1,0],[0,0,1]7]. We assume
that people rarely twist the camera severely relative to the

Let G be the stitch graph ofV input imagesJ denotes its horizon when capturing a picture, which can be a relative loose
edge set, in which each edgg j) corresponds to a pair of assumption than the one in [1] and [13]. Hence, we [Bk
adjacent images§l;, I;). In general, thea could be manually with V¥, vy, vY¥] by:
specified or automatically verified by the probabilistic mod- M = [m,, m,, mj], which is determined by
el [1]. Let’s defineP = {P;;|(i,j) € J} as the set of matched o .
feature points. We apply LSD [32] to detect line segments on m; = argmin [|d; — vy, = 1,2,3. )]

1;, and then loosely follow the scheme in [24] to find three !

orthogonal VPSv?, v, vi] without the intrinsic parameters. Meanwhile, we rearrandé?, v, v4] for I, in order to make
As illustrated in Figure 2, we subsequently obtain the initidhem correspond tD, that is,Vi < di, k =1,2,3. Then, the
rotation estimation{a;}¥, through two steps: (l)nter- transformation from theé-th camera to the global Manhattan
camera alignmentvPs from different images are first alignedworld is formulated as:

in the same reference coordinate system, in which we can w i 11
estimate dominant directions using these roughly aligned VPs. R} = MV, ¥5,¥3]7, (6)

(2) Camera-world alignmen¥/Ps are associated with the idea{,\,heresz is a3 x 3 rotation matrix. We decompose it to get
vanishing directions in Manhattan world to produce initial, which is a 2D rotation angle with respect t0axis.

rotation estimation{a;},. After that, we design a robust 3y Robust Estimation.instead of directly takingy; asf;,
estimation scheme to get optimal rotation regl} ¥ ;. we propose to estimat;} ¥, through minimizing an objec-

1) Inter-Camera Alignment.We project VPs of different tive function with regardingy; as the data term. In addition,
images onto a unified sphere surface in order to achiewe consider the relative rotation between adjacent images as
alignment. As a preparation, based on the matched point g8 smoothness term. Specifically, for image fdir I;), the
P, we first estimate the 3D rotatidR; for each image; by relative 2D rotations; ; is obtained by decomposirig,R; .
bundle adjustment method [1]. After that, without the loose &f/e represent; by a unit 2D vectol¢;,w;)T, and the rotation
generality, we regard, as a reference and s&¢ = R,.. VPs {0; = (u;,v;) T}, are obtained by minimizing:
then are projected as:

W, vh, 0l = WR VL V2 Y5 (o) ;II [ﬂ - E] IP+A D IR(Bi) [H _[:jj] 12, (@)

VA Vel vl (i.d)ed

A. Rotation Estimation with VP Guidance

Assuming that the scene satisfies the Manhattan world antlere R(g; ;) denotes the2D rotation matrix specified by
considering the possible parallax and estimation noises, thgse, and A = 10.0 is a balance weight. In Equation 7, we
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B. Stitching by Mesh Deformation

After collecting {0;}Y,, we need to determine the scale
factor {s;}2¥, to build a complete global similarity constraint.
Chen and Chuang [13] propose to estimateby the ratio
of focal length, yet this scheme relies too much on camera
intrinsic matrix. In contrast, we resort to the matched point set

— Stitching graph _ P~ P ={Py|(i,j) € I} to determines;. For a pair of adjacent
Outlier rejection Path voting images(1;, I;), we first estimate their relative scal¢’ by:
Figure 3. A illustration of two strategies adopted for robust i clhi)
estimating{6;}~_,. Left: Given the VPs alignment result and - c(hy)’ (10)

dominant directions, images whose VPs has large residuals

are marked as outliers. Right: Initial rotations are propagat Frehé and hi are :xvo COF“’@: huI}I{s that are :eltle,ré‘r?tme& bty
along the stitching graph, and are weighted using a path votiwg” an ¢(-) returns the perimeter of a convex hull. After that,
estimate the absolute scalefor I; by solving:

scheme.

N
consider eachy; equally, which is easily affected by possible arg min Z 0¥ s; — si]?, s.t. Z s; = N. (11)
noises existing in{a;}Y,. Therefore, as shown in Figure 3, * (ij)es P

two strategies are further designed to deal with this problem.. drati ined minimizati bl d
Outlier rejection. Previously, we have roughly aligned vpgl I @ quadratic constrained minimization problem, and can

of different images and have obtained their three domina?? ejsnmently solved by any I|ngar sy_stem. W'{Hi}_ijil and
directionsD. Starting from the global consistency of VPs in.5ii=1: We take the deformation objective function (Eq. 1)
Manhattan world, we compute the residual differengcdor .rom [1:”_] "’?S qur b:?\selme, b_Ut boqst ik, with our improved
I, according to its[v}, v}, vi] and D. The image whose; image similarity prior. The fma@l st|tched. panorama eventually
is larger than a threshold is marked as an outlier. We onlyIS generated by texture mapping technique.
computec; for inliers, and adopt them as the data term in
Eq. 7 to estimate the image similarity prior. IV. EXPERIMENTS AND RESULTS
Path voting. The scheme of outlier rejection actually is a In this section, we compared our proposed VPG with four
hard constraint. It has to face a dilemma that a too smablate-of-the-art methods: APAP [4], SPHP [12], AANAP [15],
7 may wrongly filter out many images. Otherwise, it maand GSP [13]. Besides the widely used qualitative comparison
introduce some fallacious;. A path voting scheme acts as ananner, two metrics were designed based on the collected
soft constraint to cope with this dilemma. synthetic image sets to quantitatively asses the panorama
As shown in Figure 3, given the stitching gragh with naturalness produced by different methods. It is encouraged
N images, we collect all valid pathB; = {pf};;l within  to browse our project homepage, in which more vivid results
a maximal lengthf,,., for each inlier imagel;, wherec¢; are provided for clear observation and comparison.
denotes the total number of valid paths figr p¥ starts from
I; and ends at its neighboring inlier images. A path is vali}- VPG Dataset
only when it does not pass through any outlier image. We 36 sets of images were collected to form the VPG dataset.
then divideP; into two parts: the supporting s@&" and the As shown in Figure 4, it includes2 sets of synthetic images
opposing setP; . Such a division is achieved based on thand24 sets of real images. All synthetic images were generat-
relative rotation angle3; ; between adjacent images and bgd through 3Ds Max renderiddgience the associated camera
judging eachp? whether it supports the estimation resalt parameters are known. All real images were captured by
for image I; or not. Forp® € P;", we directly take its path ourselves with a mobile phone. The VPG dataset contains both
length L(p¥) as the supporting lengt(p¥). Otherwise, its indoor scenes and outdoor street-view scenes. Specifitally,
opposing lengthO(p¥) is calculated asf,... + 1 — L(pF). synthetic sets are composedidhdoor cases an street-view
Then, we weight the corresponding data term with which cases. Similarly24 real sets consist df2 indoor scenes ant

is defined as: street-view scenes. More details can be found in Figure 4. Itis
> ept S() noteworthy that all images were carefully collected to ensure
b =of pely ), (8) that they satisfy the Manhattan assumption. The number of

ZPGPT S(p) + ZPER’ O(p) images involving in stitching in each set ranges frono 72.

where o(-) is a sigmoid-form non-linear mapping function. i .
After the above two schemes, the data term in Eq. 7 I|35 Quantitative Metrics

developed into: Before specific experiments, two quantitative metrics first
are introduced for the assessment of panorama naturalness.

Z Wil [“t} _ [@} 112, (9) Note that comprehensively evaluating the panorama quality is

I ew Vi Wi still an open research problem [33], [34], and it is not the main

o ] concern of this paper either. Therefore, we simply start from
where ¥ denotes inlier images{#;})Y, are obtained by

minimizing Equation 7. Shttps:/iwww.autodesk.com/
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Figure 4. An overview of the VPG dataset. It consstsl@fsynthetlc sets (01-12) aritlt real sets (13-36). 01-06 and 13-24
are indoor cases. 07-12 and 25-36 are outdoor street-view cases.

Stitched panorama for I;, as shown in Figure 5, we compute a rotatignfor

I; on the image plane. It is a 2D angle between the camera
y-axis and the absolute vertical directiop.approximates the
direction of image content in the world coordinate system. Ac-
cordingly, on the output panorama, we estimate the bounding
rectangle with the minimal area for deformed vertexed,;of

and take the rectangle orientatienas the direction of; after
stitching. We think that the relative direction of image content
Figure 5. An illustration of the proposed GDIC metric. Withshould be preserved as much as possible if images are stitched
the assist of external parameters, we approximate the directiith a natural look, and the GDIC then is defined as:

of image content by a 2D angtewith respect to the absolute Zz_v (s = ) = (3= )|
vertical direction. Accordingly, we approximate the direction GDIC = Zi=tizr N ) 7 1 7 )L
of stitched image content by, the orientation of the image N-1

boundlng rectangle. The GDIC then measures the averé@éerer denotes the selected reference for relat|ve direction

methods. Slnce the proposed GDIC requires the external

parameters, it is available only for synthetic image data in
the observation that a panorama produced by stitching methads experiments.
usually suffers two kinds of unnaturalness: local projective
distortion, and global unnatural rotation. Accordingly, w&. Comparison with APAP [4] and SPHP [12]
put forward two indexes for quantitative evaluation: Local Wwe first compared VPG with two early state-of-the-art
Distortion (LD) and Global Direction InConsistency (GDIC).algorithms: APAP [4] and SPHP [12]. They were tested using

1) LD-index: LD is used to evaluate the local projectivéhe source code provided by the authors. Since APAP and

distortion. LetQ be a quad with four vertexes, the local hoSPHP have limitations on the field of view, we had to reduce
mographyH can be computed from its original and deformethe number of involved images from tens3 during our ex-
coordinates. We first use a similar way as in [12] to measuperiments. Table | reports the quantitative results on synthetic
the local area change at image positiany): sets04-09. VPG outperforms other two competing methods

in both LD and GDIC metrics. Figure 6 further provides

M(H, (z,y)) = detJu (,y), (12) qualitative comparisons on one synthetic set)(and one

where Jy; is the Jacobian off. We then calculate the meanreal set 29). As we can see, panoramas produced by APAP
g and the standard deviatien, of M from all pixels within - and SPHP exhibit severe projective distortions and unnatural
Q, and take the coefficient of variation (c.w),/uq as the rotations. Adjusting the zero-rotation switch for SPHP has
measurement of projective distortion Q. Subsequently, for very limited effects in improving naturalness. In contrast, the
I;, we compute the c.v. for all quads that located on thH@oposed VPG produces panoramas with apparently higher
non-overlapping region, and take their average value as wgual quality. The qualitative comparison also is consistent
measuremenD; for I;. Finally, we define the LD index as: With the quantitative evaluation.

(14)

LD = max(Dy, Da, ..., D). (13) D. comparison with AANAP [15] and GSP [13]

2) GDIC-index: GDIC aims to measure the global unnatu- We compared the proposed VPG with two recent state-of-
ral rotation. Assuming that the external parameters are knowhe-art natural stitching methods: AANAP [15] and GSP [13].
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Figure 6. Qualitative comparisons with APAP [4] and SPHP [X3) results from APAP. (b) results from SPHP with the
zero-rotation switch on. (c) results from SPHP* with the zero-rotation switch off. (d) results from our VPG. The correspondin
LD values are given in red text.

Table I. Quantitative comparisons with APAP [4] and SPH- 100l 91.4
P [12] on synthetic image sét-09. SPHP* denotes the zero- o
rotation switch is turned off during stitching. 5 %0
wn
Metrics _[Method$ 04 [ 05 [ 06 | 07 [ 08] 09 5
APAP |6.69|8.36/6.70|4.01|6.21 5.55 § 40¢
§ <
LD (x10-2) | SPHP | 2.20| 3.93| 7.32| 2.66|3.07 2.32 2014
SPHP*| 2.29| 2.08|3.17|2.81|2.292.16 0
VPG |0.82/1.35/1.11/1.08|0.191.15 AANAP  GSP-2D  GSP-3D VPG
APAP 118.9422.7611.4411.484.76 7.02|  Figure 9. User study result. The average scores wfethods
GDIC (deg) SPHP |11.2120.16 5.32| 4.92/8.0613.2 from 20 participants.

SPHP*| 8.75| 3.94| 6.58| 8.52(6.3012.7(
VPG |1.21/0.81|0.95/0.95|1.142.13

backgrounds and remaining 10 volunteers outside this com-
munity. We randomly selected 20 groups of stitching results
GSP was tested using the source code provided by authors #nélifferent scenese(g, indoor and street-view) for the user
both the 2D solution and the 3D solution were tested. AANABtudy. There werd unannotated panoramas in each group that
was tested using our own re-implementation. Table Il offeéere produced by methods: AANAP, GSP-2D, GSP-3D, and
quantitative comparisons on synthetic image $éts 12. The our VPG. Panoramas were shown on a screen in sequence,
proposed VPG has a comparable performance with AANAGNd the user was allowed to switch images back and forth
and GSP in LD metric since they all share a similar medar @ convenient comparison. Then, each participant ranked
deformation framework to reduce projective distortion. Mordour results in each group, and assigned each panorama with
over, in most cases, VPG steadily produces the smallest GBI® corresponding score (from rank 1 to rank 4, scores varies
values, which means the best global natural look among fdi®m 5 to 2). Figure 9 shows the user study results. The VPG is
methods of comparison. Figure 7 and Figure 8 further preséutostantially preferred. In addition, it indicates to some extent
typical qualitative comparisons on synthetic and real imag#at the adopted two metrics, LD and GDIC, are consistent
respectively, from which the superiority of proposed VP®ith the user’s subjective evaluation.

can be observed intuitively. AANAP empirically estimates

the image rotation with the smallest angle, GSP-2D assunfesvalidation of the Robust Estimation Scheme

the zero rotation for images, and GSP-3D determines thépg getermines the image similarity prior using a two-
rotation with pairwise 3D rotation relationships. Their resul ep robust estimation scheme. In this section, we hope to

exhibit vaious unnaturalness since the lack of eﬁec“"e,glo?ggasntitatively valid the effectiveness of this step. Using the
constraints. In contrast, the proposed VPG manages to impr synthetic image sdtl-12 and given the VP extraction

the panorama naturalness significantly. results from different images, we manually added random
noises to the VP coordinates before adopting them to extract
E. User Study VPs guidance. Then, we compared the associated GDIC values

Since naturalness is a subjective feeling, we further condupteduced by VPG without the robust estimation scheme and
ed a user study to investigate whether the proposed VPGhis VPG with the robust estimation scheme. Table Il reports
preferred by users. In practice, we invited 20 participants, ithe comparison results when gradually increasing the noise
cluding 10 researches/students with computer vision/graphicatio from 0% to 20%. As we can see, metric values from
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Table Il. Quantitative comparisons with AANAP [15] and GSP [13]Iansets of synthetic images. 01-06 are indoor scenes,
and 07-12 are outdoor street-view scenes.

Metrics Methods| 01 02 03 04 05 06 07 08 09 10 11 12
AANAP | 1.21| 156| 1.20| 2.94| 1.47| 1.10| 0.94| 5.17| 5.95 | 1.50| 1.14| 0.89
GSP-2D| 1.48|1.73| 1.82| 2.19| 1.85| 1.28| 1.00| 3.00| 2.68 | 2.04| 1.01| 0.74

-2
LD (<1075 4 GSP-3D| 1.41|1.60| 1.59|1.81| 1.84| 1.43| 1.05| 2.06| 2.69 | 1.35| 1.11| 0.67
VPG |1.44|1.45|1.57|2.06|1.68|1.53|0.93|2.69| 2.50 | 1.27| 1.19| 0.73

AANAP | 2.26| 1.06| 2.33| 8.72| 7.24| 8.60| 2.75| 9.49| 25.06| 4.37| 2.59| 3.25

GDIC (deg)! GSP-2D| 6.06| 2.07| 1.66| 2.77| 6.20| 1.63| 2.50| 2.70| 4.26 | 1.23| 2.22| 1.76

GSP-3D| 4.54| 2.78| 3.41| 1.05| 1.83| 1.05| 3.73| 2.05| 0.86 | 1.11| 1.70| 1.18

VPG |0.73]0.49|0.77| 0.49| 0.55| 0.74| 0.72| 0.50| 0.52 | 1.41| 0.81| 0.63

(2)

(b) |
(©)

(d)

Figure 7. Qualitative comparisons with AANAP [15] and GSP][@8 synthetic seD3 and08. (a) results from AANAP. (b)
results from GSP-2D. (c) results from GSP-3D. (d) results from the proposed VPG. The yellow points indicating the anch
directions that have been aligned to the red horizontal lines for better visual comparison. The yellow arrows hightlight tt
unnatural artifacts. The same marks are adopted in the following figures.

VPG (w/0) increases significantly as the noises increase whilee scene disobeys the required Manhattan assumption. Since
values from VPG (w/) keep relatively stable in most casesie have projected the VPs from different images on a unified
It demonstrates that the proposed robust estimation schespéere surface in previous Sections, we think these roughly
effectively ensures the robustness of VPG and maintains thligned VPs can reflect the regularity of the scene.

consistently high naturalness of the output panoramas. Given a set of aligned VPs, we define its associated VP

divergence as follows:
V. MOREANALYSIS

We further analyzed the performance of VPG in four main 1 .
aspects: (1) the adaptability for general scenes where the == > [vi—dl? (15)
Manhattan assumption may not hold; (2) the stability for Vi€inlier

reference selection; (3) the scalability for higher alignment

accuracy; (4) the time efficiency. . . . . .
yi (@) y whered; is the dominant direction of; that has been obtained

N previously,p denotes the inlier ratio that is estimated in the
A. Adaptability for General Scenes outlier rejection step. We consider a scene with a smal a
We explored the possibility that VPG adaptively falls backlanhattan scene and perform the stitching process using the
to a regular stitching scheme without using the VP clues wheomplete VPG scheme. Otherwise, we alternatively remove
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Figure 8. Qualitative comparisons with AANAP [15] and GSP][®8 real image set6 and33. (a) results from AANAP. (b)
results from GSP-2D. (c) results from GSP-3D. (d) results from our VPG.

Table Ill. Quantitative validation of the proposed robust estimation scheme for the image similarity prior. The GDIC value
of 12 synthetic image sets are reported.

Noises Methods 01 | 02| 03 | 04| 05| 06 | O7 | 08 | 09 | 10 | 11 | 12
VPG (w/o robust scheme)0.73| 0.49| 0.77| 0.82| 1.01| 0.74| 0.72| 0.65| 0.96| 2.41| 0.81| 0.63
VPG (w/ robust scheme) 0.73| 0.49| 0.77| 0.49| 0.55| 0.74| 0.72| 0.50| 0.52| 1.41| 0.81| 0.63
VPG (w/o robust schemeg)2.97 | 0.44| 1.28| 1.74| 0.90| 0.80| 0.65| 1.65| 0.81| 2.30| 1.01| 1.79
VPG (w/ robust scheme) 0.53| 0.44| 0.64| 0.84| 0.59| 0.65| 0.65| 0.54| 0.38| 1.37| 0.94| 1.53
VPG (w/o robust scheme)4.74 | 2.57| 4.47| 2.29| 2.47| 2.67| 1.67| 2.21| 3.19| 8.55| 1.65| 1.13
VPG (w/ robust scheme) 0.56 | 0.42| 0.63| 0.47| 0.57| 0.63| 0.74| 0.71| 0.56| 3.75| 0.94| 0.85

0% noises

10% noises

20% noises

the VP guidanckin Eqg. 7 to make the proposed stitchingnon-Manhattan) is unknown and so we tested VPG on the
algorithm fall back to the regular scheme as in [13]. GSP dataset [13]. It consists @2 image sets and contains

In order to determine the threshold fer we collected nearly all popular images for stitching algorithm evaluation.
another130 sets of image. Half of them were captured irbince the Manhattan assumption is not necessarily satisfied in
Manhattan scenes, and another half of them were captured58P dataset, as presented in Figure 10, the associated VP
natural scenes (non-Manhattan). Their VP divergence valudigergences are distributed on both sidesepf Figure 11
were computed according to Eq. 15 and are presentedaind Figure 12 present typical results on GSP dataset. On the
Figure 10. As we can see,from a Manhattan scene usuallyone hand, when the of a scene is small, VPG manages to
is small and tends to be limited in a narrow range. On theprove the panorama naturalness by utilizing the reliable VPs
contrary,e of a natural scene usually has a relatively largguidance. On the other hand, if thds large which indicates
value. gy = 0.10 seems to be a valid sentry threshold tthe scene is prone to be a non-Manhattan scene, VPG still
distinguish the Manhattan scenes from non-Manhattan scer@®) produce natural looking panoramas by weakening the

To verify the adaptability of VPG when resorting tg extracted VPs guidance. Note that all results are produced
we hope to simulate a practical VPG application scenafy VPG automatically without any manual intervention. It
in which the regularity prior about the scene (Manhattan élemonstrates that the proposed VPG can be well applied

in general (Manhattan or non-Manhattan) scenes. Figure 16

4Thanks to the straighten strategy in [1], Eq. 7 is solvable even we weakBR€SENtS more stitching results on GSP dataset.
or remove the VP-relevant data term.
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Table V. Average Runtime of different stitching methods.

VPG Dataset

B GSP Dataset Dataset AANAP GSP VPG
VPG Dataset 109.44s| 45.82s| 47.82s
GSP Dataset 53.63s | 23.55s 29.04s

naturalness at the expense of a decreased alignment accuracy
In previous experiments and analysis, for a fair compari-

Manhattan
B  Non-Manhattan 10

4
Tn

(7%}
=

Numbers
Numbers

L

N

bo VP Divergence o3 doo 003 P bhversence . *** son, VPG follows a similar scheme as in [13] to extract
(a) (b) the alignment constraints. Although it inherits the powerful

Figure 10. (a) VP divergence distributions of Manhattan scen%légnment capgbll]lcty Eroylded bydAEAP [4], the allgndment d
and Non-Manhattan scenes. (b) The associated VP diverge%%%ur.acy can be furt \er increased by many recent a vance
o stitthing frameworks like DFW [5] and GCPW [39]. In this
distributions of the adopted VPG dataset and GSP dataset, . .
Section, we show that the proposed VPG is scalable for
[Ee=csp2p ——csrp ——vrq| achieving a higher alignment accuracy. In other words, the
naturalness improvement achieved by VPG is compatible with
high alignment accuracy. Figure 14 and Figure 15 present
two groups of panoramas produced by different methods and
report the associated GDIC values and the MSE of alignment
accuracy [7], [40], [20], [6]. By combining VPG with DFW
Reference Image Reference Image and GCPW, the output panoramas not only have more natural
(@) (b) looks than GSP, but also have higher alignment accuracy than

[Es=GsP2b ——Gsp3p ——vrq] both GSP and the original VPG.

6
3 z D. Time Efficiency
: X \ N \ //"\/ To evaluate the stitching efficiency of VPG, Table V reports
2 the average runtime of AANAP, GSP, and VPG on 36-set
1
0

[E2—Gsp-2D —»—Gsp-3D —A—Vr(]

GDIC

8
7
6
5
4
3
2
1
0

GDIC
S — W s Loy

A A A A A A A

0 2 4 6 8 10 12 14 16

4 [Em—=GsP-2D —y—Gsp-30 —A—vrg|

GDIC
[
GDIC

P S S VPG dataset and 42-set GSP dataset respectively. Without any

y S Y U I VI G

s s o % s o o+ 5w acceleration technology, the proposed VPG method slightly
Reference Image Reference Image increases the runtime by abot0% when compared with
(©) (d) GSP but it significantly improves the panorama naturalness.

Figure 13. Quantitative evaluations of the influence of refe\?\;?flliersr’]u\éﬁ Ct';eltste?pgﬁg:gg{f%ﬁ:ﬂ?ﬂiﬁter than AANAP
ence selection on different stitching methods. (a)-(d) presen{ P '

the results on VP®3, 05, 08 and 11 respectively. VI. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a vanishing-point-guided stitching
B. Stability for Reference Selection method called VPG. VPG successfully exploits the predom-

Reference selection is an important but challenging issince of VPs to achieve a robust estimation for image
for image stitching. Many algorithms are sensitive to thisimilarity prior, which finally leads to a more natural looking
step and as a result, they may vyield significantly differemanorama. Quantitative and qualitative comparisons on syn-
panoramas when different images are selected as the referefiwiic and real images combined with a user study demonstrate
Selecting the optimal reference is not easy even many meth®RG’s superiority over other state-of-the-art methods. More
have been proposed in the past decade [35], [36], [37], [38halyses upon VPG show that although VPG is designed for
Taking 4 sets of synthetic images as an example, Figure Manhattan scenes, it possesses good adaptability for general
reports the GDIC quantitative results of VPG when differersicenes through a degradation mechanism. Meanwhile, due to
images are selected as the reference during the stitchthg introduction of global VPs, VPG outputs stable panoramas
process. As we can see, results from GSP-2D are sevettbigt are free from different reference selections. Moreover,
affected by reference selection since different reference wiPG is scalable and compatible with other advanced stitch-
lead to different images with the zero-rotation, which makésg frameworks to achieve a coordination between panorama
the panorama appearance change significantly. In contrast, naguralness and alignment accuracy. We also observed some
proposed VPG produces much more stable GDIC values kimitations for VPG. Firstly, VPG is prone to fall back to the
matter which image is chosen as the reference. Note th@n-Manhattan scene when the number of involved images is
results from GSP-3D have a similar stability with VPG, but themall €.g, 2 or 3). Because in such cases, the VP consisten-
corresponding GDIC values are much larger which indicatecst usually is not remarkable for similarity prior estimation.

worse panorama naturalness. Secondly, VPG may fail when facing dramatic depth variation
or large parallax, which could influence the VPs alignment
C. Scalability for Higher Alignment Accuracy results and cause unnatural artifacts. Note that extremely large

Except for naturalness, alignment accuracy is another ggrallax is also challenging for most other existing stitching
sential issue that is widely considered when designing approaches and is the issue that needs to be overcome in the
stitching algorithm. Some methods [3] achieve high panorarfigure work.
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(2) (b) (c) (d)

Figure 11. Qualitative comparisons with AANAP [15] and GSB][&n 2 GSP sets. (a) results from AANAP. (b) results from
GSP-2D. (c) results from GSP-3D. (d) results from VPG. Top row is a indoor scene3ittput images and the associate
e = 0.044 < gy. Bottom row is a outdoor scene withinput images and = 0.048 < &.

Figure 12. Qualitative comparisons with AANAP [15] and GSB][bn one GSP set. (a) results from AANAP. (b) results
from GSP-2D. (c) results from GSP-3D. (d) results from our VPG. It is a scenelwithput images and = 0.161 > .
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(¢) VPG+DFW (GDIC: 1.00, MSE: 10.89) (d) VPGHGCPW (GDIC 1.09, MSE: 10.19)

Figure 14. Qualitative comparisons between GSP-3D [13],attiginal VPG, VPG+DFW and VPG+GCPW on VPG
synthetic sef1. By combining VPG with DFW and GCPW, the alignment accuracy gets improved significantly without
any obvious loss of panorama naturalness.

e g {
(“1 'mi—u r— .-'__. : = i ' “! 'ml‘, f——
el il ¢ T i 0

e el ) mgtl UL e B

) | LIRSS ; y T THULE

(c) VPG+DFW (-, MSE: 5.93) (d) VPG+GCPW (-, MSE: 5.49)

Figure 15. Qualitative comparisons between GSP-3D [13],attiginal VPG, VPG+DFW and VPG+GCPW on VPG
real set13. By combining VPG with DFW and GCPW, the alignment accuracy gets improved significantly without any
obvious loss of panorama naturalness. Note that the GDIC values are unavilable for real image data.
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Table IV. Basic information about the2 panoramas (a)-(I) presented in Figure 16. Note thatthalues from (a)-(h) are less
thane( while values from (i)-(l) are larger thasy.

No. @ | B | © | d | e | @ | () | O @) (k) 0]
Image Numbers 2 4 5 6 11 3 5 21 10 5 7 15
€ 0.0204 0.0019 0.0068| 0.0005/ 0.0740 0.0002/ 0.0114| 0.0781{ 0.1917| 0.1291) 0.1464 0.2022

Figure 16. More stitching results on GSP dataset.
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